
The Outside World

Scryer Prolog Meetup 2023 - Düsseldorf
Adrián Arroyo Calle - https://adrianistan.eu

https://adrianistan.eu

?- person(Name, Surname).

Name = “Adrián Arroyo Calle”.

City = “Valladolid, Spain”

Job = “Backend developer at Telefónica”

Website = “https://adrianistan.eu”

Mail = “aarroyoc@adrianistan.eu”

Mastodon = “aarroyoc@castilla.social”

https://adrianistan.eu
mailto:aarroyoc@adrianistan.eu

My Prolog background

Always liked classic logic. I learnt about it first in high school in
philosophy class (truth tables, Modus Tollens, De Morgan
laws, …)

My first contact in Prolog was in university. At first I didn’t
understand it. But it was a challenge!

I end up liking the challenge. I like how you could focus more
on the description of the problem. I started to use Prolog
more and more for “general” programming. But Prolog can
improve a lot!

There are lot of things
in Prolog that can be
improved. I’ll focus on
“the Outside World”

Turing complete is not enough

Prolog is a Turing complete language, that means every

problem that can be computed in any mainstream language

(think Java, Rust, Python, C, …) can be expressed in Prolog too.

However, when we try to do some stuff in Prolog is…

complicated

Why it’s not enough?

Operating systems do not talk Prolog

Hardware does not talk Prolog

Lots of mature software do not talk Prolog (we don’t want to

throw up the massive work done by millions of people!)

For lots of projects Prolog is not a good tool yet

Even today, most people is not coding in Prolog! So every day,

excellent code gets written in \+ Prolog and we can’t use it :/

The ideal Prolog system
The only part that really talks Prolog is the Prolog system!

An ideal Prolog system should hide all the details so that we only talk
Prolog yet we can do whatever we want! Ideally it would be an OS by itself

Inside Out ; Out Inside

So, we need to talk to the outside world. The Prolog system

should provide mechanisms to do that talk. There are two

types of mechanisms:

Outside -> Prolog Prolog -> Outside

Library embedding (WASM too) Files and sockets

Files and sockets Foreign Function Interface

Execute scryer-prolog in subshell

Files and sockets

Files can be used to communicate with the operating system

and other programs. Some systems such as Linux actively

promote this usage.

Sockets are files too! And they can go from one machine to

another. If we do not want to manage low level details we can

use HTTP, which started for the WWW but now it’s used for

APIs in all kind of systems. Some systems also provide IPC like

D-Bus on desktop Linux but it is not very portable.

Why not files then?

Files and sockets provide good solutions for interacting with
the outside world, and they’re already supported by Scryer
Prolog. However they have a few problems:

● There must be something reading/listening at the other
side!

● Each application should define its own DSL to interact
with

● Poor error handling
● Performance and latency

FFI, or, being an actor

Foreign Function Interface could be resumed as if language X is
doing that to call function Y, we replicate that behaviour and we
could call Y just as if we were programming in X!

X always bounds to C for all practical purposes.

What has the FFI
ever done for us?

How does it
work? Let’s do an example from

scratch!

First, the principles

The current design of FFI has been designed using the

following principles:

● No need for glue code

● Should be as declarative as possible

● Should be similar to current module system

● Should be simple

Trealla Prolog did an initial version of this. I just modified a

little bit the design.

use_foreign_module

Similar to use_module, to interop with a native library we use

use_foreign_module.

● First argument must be the location of the native library

(.dll, .so, .dylib)

● Second argument is a list of functions that we want to

import. We need the name of the function, the input

argument types and the output type.

Types

We define some basic types to be used in the function import
definitions: void, bool, f32, f64, sint8, sint16, sint32, sint64,
uint8, uint16, uint32, uint64, ptr.

Those are the building blocks. They fit into registers. They can
point to memory addresses (useful for pointers).

We additionally allow defining custom structs: foreign_struct.
A struct in C is a pack of other types.

There’s an additional cstr type that allows us to use Prolog
string directly doing additional conversions.

foreign_struct

To define a custom struct, we declare a name and the type of
each property. Names do not matter, but the order matters!

For example:

?- foreign_struct(color, [uint8, uint8, uint8]).

struct {

 uint8_t red; uint8_t green; uint8_t blue;

} // not HDR friendly… :)

For each function in the import list we assert a predicate with
the same name in the module ‘ffi’. Each input argument gets
mapped in order. The last argument is the output argument.
However, two exceptions:

● functions that return void do not have an output
argument

● functions that return bool do not have an output
argument but the predicate fails if the function returns
false

All together (Raylib)

It should be possible
to autogenerate this
Prolog glue from C
headers. Do we want it?

Now, the magic
And why we must use libffi

Let’s see the Rust code that

implements this

dlopen / LoadLibrary

● When the user defines a foreign_module, the first thing to

do is open the library itself. This API is different on each

operating system. We use libloading crate to do it cross

platform

● For each function defined we search for the entry point

of the function (CodePtr). We use the names of the

functions, in C it is defined to keep the same name as

defined in the code, but not in C++ or Rust! (we must

compile with extern “C”)

libffi

To call a function with FFI we must follow a calling convention. Those
conventions are different in different operating systems and
architectures. libffi is a battle tested library that detects and implements
that calling conventions for us.

Used by:

● CPython
● OpenJDK (Java)
● GHC (Haskell)
● Racket
● Deno (JavaScript)
● and more…

The basic building block of libffi is the CIF. A CIF is a definition

of a foreign function for an specific ABI. In a CIF we must

define input arguments and the output argument. They must

be ffi_type.

There’s a map between Prolog FFI types and libffi ffi_types. Also for
structs.

We store the CIF along with the CodePtr and some other data

to facilitate conversions between Prolog and the ABI.

Call me, maybe?

We’re now ready to explain what happens when we call a native
function. We’ll see that due to the amount of work we need to do
on every call these calls are expensive.

Once we find the CIF and CodePtr for the function we must map
each argument to a pointer. libffi does not accept arguments
directly, we must pass a pointer to the data. We can use Box to put
data in the heap and get a raw pointer (*mut c_void)

We store the Boxes in a Vec so when the Vec drops, we liberate the
memory from the arguments too!

But with structs…

To pass value structs we must do additional stuff. We need to

align the struct. It means we need to pack the data in a certain

way. This is system dependant.

Luckily, libffi generates that data for structs for us. And Rust

has an API to write memory following alignments!

Finally, we can ffi_call

But for structs we need to read a block of memory, following

the same alignment as when writing parameters.

Ok, but what about arrays?

Fixed size arrays are the same as structs, but all the fields are

of the same type. We don’t have an specific way to define

them and currently requires to register them with a name.

Should we change this?

Some libraries are harder than others

Let’s take for example SDL:

● Almost all require you to allocate memory first for structs

and their functions only set the data. (There’s a PR with one
possible solution)

● Sometimes they don't use structs but unions!

● Some functions don't really exist, they're just C macros.

The binding process needs to reconstruct what the macro

is doing.

More missing stuff

● Callbacks
○ Certain APIs like wgpu require being able to pass a pointer to a

function they are going to call. Right now, it seems very difficult to
do it.

● More memory manipulation helpers
○ While we can call malloc/free, we cannot manipulate raw data

easily: think array[12] = SOMETHING.
○ Modifying fields in structs when we have a pointer

● Improve errors
● An adaptation for WASM?
● Better tooling?
● Is this the right approach? Or a plugin based approach

makes more sense?

The End?

